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Abstract
The q-deformed coherent states for a quantum particle on a circle are introduced
and their properties investigated.
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1. Introduction

In spite of the fact that the first paper devoted to the quantum mechanics on a circle is most
probably the article by Condon on the quantum pendulum, dated 1928 [1], the coherent states
for a quantum particle on a circle have been introduced only recently [2, 3]. It is no wonder
that there is also no example of quantum deformations of these states so far. We recall that
the q-deformation of the standard coherent states was constructed 15 years ago in [4]. The need
for such deformations is motivated, among others, by the importance of the non-deformed
coherent states for the quantum mechanics on a circle, which have been already applied
for example in quantum gravity [5]. In this work, we introduce the q-generalization of
the coherent states for a quantum particle on a circle. We first recall the basic facts about the
quantum mechanics on a circle. Consider a free particle on a circle S1. According to [2], the
best candidate to represent the position of a particle on the unit circle is the unitary operator
U = eiϕ̂ (ϕ̂ Hermitian) satisfying the following commutation rule with the Hermitian angular
momentum operator J :

[J,U ] = U. (1.1)

In the Hilbert space L2(S1) of 2π -periodic functions, specified by the scalar product

〈f |g〉 = 1

2π

∫ 2π

0
dϕ f ∗(ϕ)g(ϕ), (1.2)

the operators U and J act as follows:

Uf (ϕ) = eiϕ f (ϕ), (1.3)
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and

Jf (ϕ) = −i
d

dϕ
f (ϕ). (1.4)

Consider now the eigenvalue equation

J |j 〉 = j |j 〉. (1.5)

Demanding the time-reversal invariance of representations of (1.1) we have only two
possibilities left: j integer and j half-integer [2]. In this work, we restrict ourselves for
simplicity to the case of integer j . Using (1.1) one finds that the operators U and U † are the
ladder operators such that

U |j 〉 = |j + 1〉, (1.6a)

U †|j 〉 = |j − 1〉. (1.6b)

Projecting (1.6b) on the eigenvector |ϕ〉 of U satisfying

U |ϕ〉 = eiϕ|ϕ〉 (1.7)

we get

ej (ϕ) := 〈ϕ|j 〉 = eijϕ. (1.8)

Of course, the vectors ej (ϕ) are the basis vectors in the representation space L2(S1). We
finally write down the orthogonality and completeness conditions satisfied by the vectors |j 〉
of the form

〈j |j ′〉 = δjj ′ , (1.9)
∞∑

j=−∞
|j 〉〈j | = I. (1.10)

2. Coherent states for the quantum mechanics on a circle

We now recall the construction of (non-deformed) coherent states |ξ 〉 for a quantum particle
on a circle described in [2], where these are introduced as the solution of the eigenvalue
equation

Z|ξ 〉 = ξ |ξ 〉, (2.1)

where

Z = exp
(−J + 1

2

)
U. (2.2)

The convenient parametrization of ξ consistent with the form (2.2) of the operator Z is

ξ = exp(−l + iα). (2.3)

We point out that the parametrization (2.3) relies on the deformation of the cylinder (the phase
space) specified by

x = e−l cos α, y = e−l sin α, z = l, (2.4)

and then projecting the points of the obtained surface onto the (x, y) (complex) plane.
Evidently, we then identify the points of the cylinder with the plane with extracted point
(0, 0) (the origin).

The projection of the vectors |ξ 〉 onto the basis vectors |j 〉 is given by

〈j |ξ 〉 = ξ−j e− j2

2 . (2.5)
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Making use of the parameters l and α we can write (2.5) in the following equivalent form:

〈j |l, α〉 = exp(lj − ijα) exp

(
−j 2

2

)
, (2.6)

where |l, α〉 ≡ |ξ 〉, with ξ = exp(−l + iα).
The coherent states are not orthogonal. The overlap integral is [2]

〈ξ |η〉 =
∞∑

j=−∞
(ξ ∗η)−j e−j 2 = θ3

(
i

2π
ln ξ ∗η

∣∣∣ i

π

)
, (2.7)

where θ3 is the Jacobi theta function [6].

3. q-deformed coherent states for a particle on a circle

We first introduce a q-deformation of the algebra (1.1). The general deformation of the quantum
mechanics on a circle was considered in [7]. In this work, we consider a q-deformation of the
algebra (1.1) generated only by U, Jq and the identity operator, of the form

qUJq = JqU − U, (3.1)

where U is a unitary operator representing the position of a quantum particle on a circle. We
also restrict to the case of q > 0. The fact that q is real follows directly from (3.1) and the
assumed hermicity of Jq and unitarity of U. Now, it can be easily verified that the q-deformed
angular momentum satisfying (3.1) is an element of the enveloping algebra of (1.1) such that

Jq = qJ − 1

q − 1
, (3.2)

while U remains undeformed. Clearly, Jq acts on the basis vectors |j 〉 as follows:

Jq |j 〉 = [j ]q |j 〉, (3.3)

where [j ]q = qj −1
q−1 is a quantum integer. Furthermore, using (1.4) and (3.2) we find that the

action of the operator Jq in L2(S1) is of the following form:

Jqf (eiϕ) = eiϕDqf (eiϕ), (3.4)

where Dq designates the Jackson derivative defined by

Dqf (x) = f (qx) − f (x)

(q − 1)x
, (3.5)

and we utilized the fact that in the discussed case of L2(S1) spanned by the functions eijϕ ,
where j is an integer, a 2π -periodic function of ϕ is assumed to have the Fourier series
expansion and it can be considered as a function of eiϕ . Furthermore, taking into account (3.2)
we get

[Jq, ϕ̂] = −i ln qJq − i
ln q

q − 1
, (3.6)

where ϕ̂ = −i ln U . We remark that the commutator (3.6) is nontrivially defined except of the
case q = 1 [8].

Now we are in a position to define q-deformed coherent states for the quantum mechanics
on a circle. Proceeding analogously as in the case of non-deformed coherent states discussed
in the previous section we define the q-deformed coherent states as a solution of the eigenvalue
equation

Zq |ξ 〉q = ξq |ξ 〉q, (3.7)
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where

Zq := exp(i(ϕ̂ + iJq)). (3.8)

Using (3.6) we find after some calculation

Zq = exp

(
1

1 − q

(
1 − q−1

ln q
− 1

))
exp

(
q−1 − 1

ln q
Jq

)
U. (3.9)

Taking into account (3.7), (3.9), (3.3) and (1.6b) we get

〈j |ξ 〉q = ξ−j
q exp

(
− 1

ln q

qj − 1

q − 1

)
exp

(
− j

1 − q

)
. (3.10)

Now, the form of the operator (3.8) and (2.3) indicates the following parametrization of a
complex number ξq :

ξq = exp(−[l]q + iα), (3.11)

where [l]q = ql−1
q−1 , where l is a real number, is quantum l. It should be noted that for

0 < q < 1, [l]q is an increasing function of l and it has an upper bound 1/(1 − q) approached
in the limit l → +∞. Consequently (see (2.4)), in the case of 0 < q < 1, we identify
the points of the q-deformed classical phase space with the (x, y) plane with extracted disk
x2 + y2 � exp

(− 2
1−q

)
. Evidently, this disk reduces to the point (0, 0), i.e. the origin, in

the limit q → 1 referring to the non-deformed case. In the case of q > 1, [l]q is also an
increasing function and it has a lower bound −1/(q − 1) reached in the limit l → −∞.
Therefore, in this case we identify the points of the deformed classical phase space with
the disk x2 + y2 < exp

(
2

q−1

)
, with extracted point (0, 0). Obviously, in the limit q → 1

corresponding to the non-deformed case, the disk is simply the plane (x, y) with extracted
origin.

Using (3.11) we can write (3.10) in the form

〈j |l, α〉q = exp(−ijα) exp

(
− 1

ln q

qj − 1

q − 1

)
exp

(
− ql

1 − q
j

)
, (3.12)

where |l, α〉q ≡ |ξ 〉q , and ξq referring via (3.7) to |ξ 〉q , is given by (3.11). Clearly,
relation (2.6) refers to the limit q → 1 in (3.12). We recall that the functions (2.6) span
the Bargmann representation [2]. The problem of finding the Bargmann representation in
the discussed case of the q-deformed coherent states for a quantum particle on a circle is
complicated and it will be discussed in a separate work.

The coherent states are not orthogonal. Indeed, making use of (3.12) and (1.10) we find

q〈l, α|h, β〉q =
∞∑

j=−∞
exp(i(α − β)j) exp

(
− 2

ln q

qj − 1

q − 1

)
exp

(
−ql + qh

1 − q
j

)
. (3.13)

In the limit q → 1 we recover, from (3.13), the following formula [2]:

〈l, α|h, β〉 = θ3

(
1

2π
(α − β) − l + h

2

i

π

∣∣∣∣ i

π

)
. (3.14)

It follows immediately from (3.13) that the discussed coherent states are not normalized.
Namely, we have

q〈l, α|l, α〉q =
∞∑

j=−∞
exp

(
− 2

ln q

qj − 1

q − 1

)
exp

(
− 2ql

1 − q
j

)
. (3.15)
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For q = 1 this relation reduces to

〈l, α|l, α〉 =
∞∑

j=−∞
e2lj e−j 2 = θ3

(
il

π

∣∣∣∣∣ i

π

)
. (3.16)

One can easily check that the series (3.15) is convergent for arbitrary (positive) q and (finite)
l. Therefore, by virtue of the Schwartz’s inequality the series (3.13) is also convergent for
arbitrary q and l. We finally write down the formula on the coherent states in L2(S1) following
directly from (1.8), (1.10) and (3.12) such that

〈ϕ|l, α〉q =
∞∑

j=−∞
exp(ij (ϕ − α)) exp

(
− 1

ln q

qj − 1

q − 1

)
exp

(
− ql

1 − q
j

)
. (3.17)

In the limit q → 1 this formula takes the form

〈ϕ|l, α〉 = θ3

(
1

2π
(ϕ − α − il)

∣∣∣∣∣ i

2π

)
. (3.18)

Note that in view of (3.14), (3.16) and (3.18) the series from the right-hand side of (3.13),
(3.15) and (3.17), respectively, can be regarded as q-deformations of the Jacobi theta functions.

4. q-deformed coherent states and the classical phase space

In this section, we discuss the parametrization (3.11) of the deformed phase space in more
detail. Consider the expectation value of the deformed angular momentum operator Jq given
by (3.2). On using (1.10), (3.3) and (3.12) we arrive at the following relation:

q〈l, α|Jq |l, α〉q
q〈l, α|l, α〉q =

∑∞
j=−∞

qj −1
q−1 exp

(− 2
ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
)

∑∞
j=−∞ exp

(− 2
ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
) . (4.1)

It follows from numerical calculations that there are large regions of the phase space
parametrized by q and l such that

q〈l, α|Jq |l, α〉q
q〈l, α|l, α〉q ≈ [l]q, (4.2)

where the approximation is very good. For example, for q = 0.5 and l � 0.3 the maximal
relative error is of order 1%. The fact that (4.2) is not valid for arbitrary q and l is not
surprising. We only recall that in the case of the coherent states for the quantum mechanics on
a sphere [9] we have a condition |l| � 10, where |l| is the norm of the vector l of the classical
angular momentum parametrizing the coherent states, ensuring the (approximate) coincidence
of the average of the angular momentum operator and l. In our opinion, the meaning of
the approximate relations like (4.2) is that the coherent states are as close as possible to the
classical phase space. We conclude that the parameter [l]q in (3.11) can be regarded as a
deformed version of the classical angular momentum. Let us finally recall that in the limit
q → 1, when (4.1) reduces to

〈l, ϕ|J |l, ϕ〉
〈l, ϕ|l, ϕ〉 = 1

2θ3
(

il
π

∣∣ i
π

) d

dl
θ3

(
il

π

∣∣∣∣∣ i

π

)

= l − 2π sin(2lπ)

×
∞∑

n=1

exp(−π2(2n− 1))

(1 + exp(−π2(2n−1)) exp(2ilπ))(1 + exp(−π2(2n−1)) exp(−2ilπ))
,

(4.3)
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we have a perfect approximation of the classical phase space for arbitrary l [2]. Namely, the
maximal error of (4.2) is of order 0.1%, and we have the exact equality in the case with l
integer or half-integer.

We now examine the role of the parameter α in the parametrization (3.11). Taking into
account (1.10), (1.6a) and (3.12) we find

q〈l, α|U |l, α〉q
q〈l, α|l, α〉q = eiα

exp
(

ql−1
q−1 − 1

ln q
− 1

1−q

)∑∞
j=−∞ exp

(− 1+q

ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
)

∑∞
j=−∞ exp

(− 2
ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
) . (4.4)

In the limit q → 1 this formula takes the form

〈l, α|U |l, α〉
〈l, α|l, α〉 = e− 1

4 eiα θ2
(

il
π

∣∣ i
π

)
θ3

(
il
π

∣∣ i
π

) = e− 1
4 eiα θ3

(
l + 1

2

∣∣iπ)
θ3(l|iπ)

. (4.5)

Proceeding analogously as in [2] we define the relative expectation value

q〈〈U 〉〉(l,α) = q〈U 〉(l,α)

q〈U 〉(l,0)

, (4.6)

where q〈U 〉(l,α) = q〈l, α|U |l, α〉q/q〈l, α|l, α〉q . Hence,

q〈〈U 〉〉(l,α) = eiα. (4.7)

Therefore, the parameter α labelling the coherent states can be identified with the classical
angle.

We now study the distribution of eigenvectors |j 〉s of the operator Jq in the normalized
coherent state. We recall that in the non-deformed case this is the distribution of energies of a
quantum particle moving freely in a (unit) circle [2]. The computer simulations indicate that
the function (see (3.12) and (3.15))

pl,q(j) = |〈j |l, α〉q |2
q〈l, α|l, α〉q =

exp
(− 2

ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
)

∑∞
j=−∞ exp

(− 2
ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
) , (4.8)

which gives the probability of finding the system in the state |j 〉 when the system is in
the normalized coherent state |l, α〉q/

√
q〈l, α|l, α〉q , has the same behaviour as in the non-

deformed case, that is pl,q(x) is peaked at x = l. However, in opposition to the distribution
referring to the non-deformed coherent states, when q = 1, which is the ‘discrete’ Gaussian
distribution of the form [2]

pl(j) = |〈j |l, α〉|2
〈l, α|l, α〉 = e2lj e−j 2

θ3
(

il
π

∣∣ i
π

) ≈ exp(−(j − l)2)√
π

, (4.9)

where the approximation is very good, the distribution (4.8) is asymmetrical one (see
figure 1).

We finally discuss the probability density p(l,α),q(ϕ) for the coordinates in the normalized
coherent state |l, α〉q/

√
q〈l, α|l, α〉q of the form (see (3.17))

p(l,α),q(ϕ) = |〈ϕ|l, α〉q |2
q〈l, α|l, α〉q =

∣∣∑∞
j=−∞ exp(ij (ϕ − α)) exp

(− 1
ln q

qj −1
q−1

)
exp

(− ql

1−q
j
)∣∣2

∑∞
j=−∞ exp

(− 2
ln q

qj −1
q−1

)
exp

(− 2ql

1−q
j
) .

(4.10)

As with the non-deformed case (see (3.18) and (3.16)) the function p(l,α),q(ϕ) is peaked at
ϕ = α (see figure 2). Therefore, the parameter α in (3.11) can be really regarded as the
classical angle.
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Figure 1. The plot of pl,q (j) (see (4.8)), where q = 0.5 and l = 2. The maximum is reached at
jmax = l.

Figure 2. The probability density p(l,α),q (ϕ) given by (4.10), where q = 0.5, l = 1 and α = π .
The probability density is peaked at ϕ = α.

5. A generalization of the q-deformed coherent states

We finally study a generalization of the q-deformed coherent states discussed above arising
from taking into consideration the so called ‘squeezed states’ introduced in [10]. These states
amount a generalization of the non-deformed coherent states for the quantum mechanics on
a circle introduced in [2] and can be regarded as a version of the coherent states on a circle
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introduced in [3]. Namely, they can be defined as a solution of the eigenvalue equation
generalizing (2.1) such that [10]

Z(s)|ξ 〉s = ξ |ξ 〉s , (5.1)

where

Z(s) = exp
(−s

(
J − 1

2

))
U, (5.2)

and s > 0 is a real parameter. Clearly, the case of s = 1 corresponds to the coherent states
discussed in section 2. An attempt to provide a physical interpretation of this dimensionless
parameter was made in [3] and [11], where it is suggested that it controls the ratio of spatial
width of the coherent states to the length of the circle. The counterparts of relations (2.5) and
(2.7) are of the form

〈j |ξ 〉s = ξ−j e− sj2

2 , (5.3)

s〈ξ |η〉s =
∞∑

j=−∞
(ξ ∗η)−j e−sj 2 = θ3

(
i

2π
ln ξ ∗η

∣∣∣∣∣ is

π

)
. (5.4)

Now, we define the generalized q-deformed coherent states for the quantum mechanics on a
circle as the solution of the eigenvalue equation

Zq(s)|ξ 〉s,q = ξq |ξ 〉s,q , (5.5)

where

Zq(s) := exp(i(ϕ̂ + isJq)) = exp

(
s

1 − q

(
1 − q−1

ln q
− 1

))
exp

(
s(q−1 − 1)

ln q
Jq

)
U. (5.6)

Of course, the states |ξ 〉q given by (3.7) refer to the case with s = 1. Using (5.5) and (5.6) we
easily obtain the following generalizations of relations (3.10), (3.13) and (3.15), respectively,

〈j |ξ 〉s,q = ξ−j
q exp

(
− s

ln q

qj − 1

q − 1

)
exp

(
− sj

1 − q

)
, (5.7)

s,q〈l, α|h, β〉s,q =
∞∑

j=−∞
exp(i(α − β)j) exp

(
− 2s

ln q

qj − 1

q − 1

)

× exp

(
−ql + qh

1 − q
j

)
exp

(
2(1 − s)

1 − q
j

)
, (5.8)

s,q〈l, α|l, α〉s,q =
∞∑

j=−∞
exp

(
− 2s

ln q

qj − 1

q − 1

)
exp

(
− 2ql

1 − q
j

)
exp

(
2(1 − s)

1 − q
j

)
. (5.9)

Applying the d’Alembert ratio test we find that the series (5.9) is not convergent for arbitrary
(positive) s. Namely, it follows that it is convergent if ql > 1 − s, and divergent if ql < 1 − s.
Note that these conditions seem to distinguish the case s = 1 discussed earlier, because only
if s = 1 the series (5.9) is convergent for arbitrary l.

6. Discussion

In this work, we have introduced the q-deformed coherent states for the quantum mechanics
on a circle. The correctness of the construction is confirmed by the quasi-classical character
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of the coherent states manifested, for example, by the behaviour of the expectation values of
the deformed angular momentum operator. It is worthwhile to recall that the non-deformed
coherent states specified by (2.1) as well as the coherent states of a quantum particle on a
sphere introduced by us in [9] are concrete realization of the general mathematical scheme of
construction of the Bargmann spaces introduced in the recent papers [11–13]. Thus, bearing
in mind the observations presented herein, an interesting problem naturally arises of finding
deformations of coherent states for the quantum mechanics on a sphere. It should be noted
that in view of the observations of Dimakis and Müller-Hoissen [14] one can relate, by a suitable
change of variables, the q-deformation of the quantum mechanics on a circle described by the
Jackson derivative (3.5) with a discrete quantum mechanics on a lattice. We finally remark that
the results of this paper would be of importance in the theory of special functions. We only
recall that formulae (3.13), (3.15) and (3.17) describe a quantum deformation of the Jacobi
theta functions.
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